Case Study: Secondary Progressive MS

Donna Fry, PT, PhD
University of Michigan-Flint
Toni Chiara, PT, PhD
Veterans Affairs Medical Center, Gainesville, FL
Case Learning Objectives

• Identify need to examine respiratory muscle strength
• Identify need for respiratory muscle strength intervention
• Identify appropriate measurement tool for respiratory muscle assessment
• Identify appropriate respiratory muscle strength training protocol
Sue: Demographics

- 51 y.o. female
- Secondary progressive MS
- Onset 27 years prior
- EDSS = 2.5
Sue: Co-morbidities & Symptoms

Co-Morbidities
- Allergies
- Hepatitis A
- Arthritis
- Mild depression

Symptoms
- Fatigue
- Visual disturbance
- In-coordination
- Numbness/tingling
- Muscle weakness
- Dysphagia with gastric feeding tube
Sue: Medications & Activity Level

<table>
<thead>
<tr>
<th>Medication</th>
<th>Activity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copaxone</td>
<td>• Iyengar yoga 90 minutes twice/week</td>
</tr>
<tr>
<td>Baclofen</td>
<td>• Mild Hatha yoga 60 minutes once/week</td>
</tr>
<tr>
<td>Klonopin</td>
<td>• Out in community on a daily basis</td>
</tr>
<tr>
<td>Neurontin</td>
<td>• Works part-time</td>
</tr>
<tr>
<td>Estrace</td>
<td></td>
</tr>
</tbody>
</table>
Sue: Need for Respiratory Muscle Examination

• Most people with MS do not complain about decreased respiratory function (Altintas, 2007)

• Maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP), indirect measures of pulmonary muscle strength, are both significantly reduced in patients with MS.

Sue: Need for Respiratory Muscle Examination

• In ambulatory patients with MS:
 – Average MIP values range from 55-77% of predicted values
 – Average MEP values range from 34-60% of predicted values

• In patients with MS who are primary wheelchair users or who are confined to the bed:
 – Average MIP values range from 27-74% of predicted values
 – Average MEP values range from 18-51% of predicted values

Sue: Manometry Assessment Device

• Manometer to test:
 – Maximal Inspiratory Pressure (MIP)
 – Maximal Expiratory Pressure (MEP)
Sue: Spirometry Assessment

- Spirometer to test (values obtainable dependent on device used):
 - Forced Vital Capacity (FVC)
 - Forced Expiratory Volume in 1 second (FEV1)
 - Peak Expiratory Flow (PEF)
 - Maximal Voluntary Ventilation (MVV)

- Values compared to normative data referencing gender, age, and height
Sue: Training Protocol

Protocol

• 10 weeks of daily exercise with a pressure threshold load trainer
• 3 sets of 15 repetitions
• Initial pressure set at 30% of MIP
• Weekly phone call to guide progression
• Progressed based on symptoms, RPE, and initial MIP

Respironic Inspiratory Muscle Trainer (IMT)
Adjustment of Training Threshold Load By Use of RPE

TABLE 1. Ten-Week Home IMT Exercise Training Protocol

Frequency: IMT exercises performed daily for 10 weeks.
Overload: Repetitions and Sets: Three sets of 15 repetitions.
Resistance: Initial resistance (H_{2}O cm) of the IMT was set at 30% of the subjects pretest MIP.
Progression: Subjects were called once per week by one of the investigators to assist with IMT pressure resistance training progression. IMT pressure resistance was progressed weekly according to the subject’s baseline MIP pressure and RPE as well as the subject’s symptoms.

Subject’s Baseline MIP Pressure: <50 cm H_{2}O

<table>
<thead>
<tr>
<th>Borg RPE</th>
<th>13</th>
<th>13 to 15</th>
<th>>15</th>
<th>>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure resistance (cm H_{2}O)</td>
<td>Increased by 2</td>
<td>Increased by 1</td>
<td>Maintained at same level</td>
<td>Reduced by 2</td>
</tr>
</tbody>
</table>

Subject’s Baseline MIP pressure: >50 cm H_{2}O

<table>
<thead>
<tr>
<th>Borg RPE</th>
<th>13</th>
<th>13 to 15</th>
<th>>15</th>
<th>>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure resistance (cm H_{2}O)</td>
<td>Increased by 4</td>
<td>Increased by 2</td>
<td>Maintained at same level</td>
<td>Reduced by 2</td>
</tr>
<tr>
<td>If subjects developed symptoms (ie, dizziness, lightheadedness, or shortness of breath) while performing IMT exercises, the resistance was adjusted as follows until no symptoms persisted.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symptoms</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Two or more symptomatic episodes in a row per week</td>
<td>1–2 isolated symptomatic episodes per week</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pressure resistance (cm H_{2}O)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Decreased by 2 subjects were called back 3 days later to monitor subject’s response</td>
<td>Held constant, subjects were called back 3 days later to monitor subject’s response</td>
</tr>
</tbody>
</table>

* If a subject achieved the maximum IMT Trainer pressure resistance of 41 cm H_{2}O and resistance could no longer be increased, a fourth set of exercises was added along with an increased number of repetitions up to a maximum of 15 repetitions.

Abbreviations: IMT, inspiratory muscle strength training; MIP, maximal inspiratory pressure; RPE, rating of perceived exertion.

Fry et al, 2007
Sue: Demographics

- 51 y.o. female
- Secondary progressive MS
- Onset 27 years prior
- EDSS = 2.5
Sue: Spirometry

Gender: Female
Age: 51
Diagnosis: Secondary Progressive

Spirometry

<table>
<thead>
<tr>
<th>Test</th>
<th>Ref</th>
<th>Pre Meas</th>
<th>% Pref</th>
<th>Post Meas</th>
<th>Post % Pref</th>
<th>Post Chg</th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (Liters)</td>
<td>3.28</td>
<td>3.29</td>
<td>100</td>
<td>3.78</td>
<td>115</td>
<td>15</td>
</tr>
<tr>
<td>FEV1 (Liters)</td>
<td>2.49</td>
<td>2.20</td>
<td>88</td>
<td>2.41</td>
<td>97</td>
<td>9</td>
</tr>
<tr>
<td>FEV1/FVC (%)</td>
<td>75</td>
<td>67</td>
<td></td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEF25-75% L/sec</td>
<td>2.86</td>
<td>1.27</td>
<td>44</td>
<td>1.26</td>
<td>44</td>
<td>-1</td>
</tr>
<tr>
<td>PEF (L/sec)</td>
<td>5.95</td>
<td>5.93</td>
<td>100</td>
<td>6.57</td>
<td>110</td>
<td>11</td>
</tr>
<tr>
<td>FET100% (Sec)</td>
<td>9.30</td>
<td></td>
<td>11.48</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIVC (Liters)</td>
<td>3.28</td>
<td>3.55</td>
<td>108</td>
<td>3.45</td>
<td>105</td>
<td>-3</td>
</tr>
<tr>
<td>FIF50% (L/sec)</td>
<td>4.60</td>
<td></td>
<td></td>
<td>5.54</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>FVL ECode</td>
<td>000000</td>
<td>000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVV (L/min)</td>
<td>99</td>
<td>89</td>
<td>90</td>
<td>111</td>
<td>112</td>
<td>25</td>
</tr>
</tbody>
</table>

MVV: 6 L/min
f (BPM): 65
BPM: 110
Chg: 28

Flow

[Graph showing spirometry data]
Sue: Discussion of Spirometry Results

• Sue was in relatively normal range for spirometry measures.

• Improved function in primary values of interest:
 – FVC
 – FEV1
 – PEF
 – MVV
Sue: Manometry

Maximal Respiratory Pressures

<table>
<thead>
<tr>
<th></th>
<th>Ref</th>
<th>Pre Meas</th>
<th>Pre % Ref</th>
<th>Post Meas</th>
<th>Post % Ref</th>
<th>Post % Chg</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI max cmH2O</td>
<td>78</td>
<td>49</td>
<td>63</td>
<td>83</td>
<td>106</td>
<td>69</td>
</tr>
<tr>
<td>PI Volume Liters</td>
<td>0.95</td>
<td></td>
<td>1.14</td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>PE max cmH2O</td>
<td>143</td>
<td>93</td>
<td>65</td>
<td>107</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>PE Volume Liters</td>
<td>2.05</td>
<td></td>
<td>2.27</td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>
Sue: Discussion of Manometry Results

• Baseline values at 63% for MIP and 65% for MEP.
 – Any value under 60% of predicted for MIP and MEP is considered clinically abnormal.

• Increase of 69% in MIP and 15% in MEP following IMT strengthening.
Sue: Discussion of Spirometry and Manometry Results

• Respiratory muscle weakness must be approximately less than 50% of normal to see reduction in spirometry values. (Rochester, 1994)

• Sue displayed significant respiratory muscle weakness even with relatively normal spirometry values.

• Thus, manometry is a more sensitive measure of respiratory muscle dysfunction in persons with MS.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Pre-test</th>
<th>Post-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Limb Stance</td>
<td>4.38 seconds</td>
<td>14.53 seconds</td>
</tr>
<tr>
<td>Functional Stair Test</td>
<td>3.78 seconds</td>
<td>3.13 seconds</td>
</tr>
<tr>
<td>Sit-to-Stand Test</td>
<td>10.75 seconds</td>
<td>9.60 seconds</td>
</tr>
<tr>
<td>Six Minute Walk Test</td>
<td>1712 feet</td>
<td>1807 feet</td>
</tr>
<tr>
<td>Fatigue Severity Scale (7 point</td>
<td>Mean score = 6</td>
<td>Mean score = 3.3</td>
</tr>
<tr>
<td>likert scale)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sue: Anecdotal Follow-up

• Sue continued to use the IMT for one year following the study because she felt it was helpful.

• Continues with Iyengar yoga with strong emphasis on breathing
References on Respiratory Muscle

References on Respiratory Muscle

• Brück W. Inflammatory demyelination is not central to the pathogenesis of multiple sclerosis. *Journal of Neurology* 2005;252(Supplement 5):v10 - v15

References on Respiratory Muscle

References on Respiratory Muscle

References on Respiratory Muscle

References on Respiratory Muscle

References on Respiratory Muscle

References on Respiratory Muscle

References on Respiratory Muscle

References on Respiratory Muscle

References on Respiratory Muscle

References on Respiratory Muscle

